Градуированное многообразие

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Градуированные многообразия представляют собой расширение концепции многообразия на основе представлений о суперсимметрии и коммутативной градуированной алгебры. Градуированные многообразия не являются супермногообразиями, хотя есть определенное соответствие между градуированными многообразиями и супермногообразиями Девитта. Как градуированные многообразия, так и супермногообразия определяются в терминах пучков -градуированных алгебр. Однако градуированные многообразия характеризуются пучками на гладких многообразиях, тогда как супермногообразия определяются склеиванием пучков супервекторных пространств.

Градуированные многообразия[править | править код]

Градуированное многообразие размерности определяется как локально окольцованное пространство , где является -мерным гладким многообразием и  — -пучок алгебр Грассмана ранга , где  — пучок гладких вещественных функций на . Пучок называется структурным пучком градуированного многообразия , а гладкое многообразие  — телом . Сечения пучка именуются градуированными функциями на градуированном многообразии . Они образуют коммутативное градуированное -кольцо , называемое структурным кольцом . Известные теорема Батчелора и теорема Серра — Свана[англ.] следующим образом характеризуют градуированные многообразия.

Теорема[править | править код]

Пусть  — градуированное многообразие. Существует векторное расслоение с -мерным типичным слоем , такое что структурный пучок градуированного многообразия изоморфен структурному пучку сечений внешнего произведения расслоения , типичным слоем которого является алгебра Грассмана .

Пусть  — гладкое многообразие. Градуированная коммутативная -алгебра изоморфна структурному кольцу градуированного многообразия с телом тогда и только тогда, когда она — внешняя алгебра некоторого проективного -модуля конечного ранга.

Градуированные функции[править | править код]

Хотя упомянутый выше изоморфизм Батчелора не является каноническим, во многих приложениях он изначально фиксирован. В этом случае всякая локальная карта тривиализации векторного расслоения порождает локальное расщепление градуированного многообразия , где  — базис слоя расслоения . Градуированные функции на такой карте представляются -значными функциями

,

где  — гладкие вещественные функции на и  — нечетные порождающие элементы алгебры Грассмана .

Градуированные векторные поля[править | править код]

Пусть задано градуированное многообразие . Градуированные дифференцирования структурного кольца градуированных функций называются градуированными векторными полями на . Они образуют вещественную супералгебру Ли относительно суперскобок

,

где обозначает грассманову четность . Градуированные векторные поля локально имеют вид

.

Они действуют на градуированные функции по закону

.

Градуированные внешние формы[править | править код]

Модуль, -дуальный модулю градуированных векторных полей , называется модулем градуированных внешних одно-форм . Градуированные внешние одно-формы локально имеют вид , так что внутреннее произведение между и дается выражением

.

Наделенные операцией градуированного внешнего произведения

,

градуированные одно-формы порождают градуированную внешнюю алгебру градуированных внешних форм на градуированном многообразии. Они удовлетворяют соотношениям

,

где  — степень формы . Градуированная внешняя алгебра является дифференциальной градуированной алгеброй относительно градуированного внешнего дифференциала

,

где градуированные дифференцирования , градуировано коммутативны с градуированными формами и . Справедливы соотношения

.

Градуированная дифференциальная геометрия[править | править код]

В категории градуированных многообразий рассматриваются градуированные группы Ли, градуированные расслоения и главные градуированные расслоения. Вводится также понятие струй градуированных многообразий, которые, однако, отличаются от струй сечений градуированных расслоений.

Градуированное дифференциальное исчисление[править | править код]

Дифференциальное исчисление на градуированных многообразиях формулируется как дифференциальное исчисление над коммутативными градуированными алгебрами, аналогично дифференциальному исчислению над коммутативными алгебрами.

Физические приложения[править | править код]

Благодаря вышеупомянутой теореме Серра — Свана нечетные классические поля на гладком многообразии описываются в терминах именно градуированных многообразий, а не супермногообразий. Будучи обобщенным на градуированные многообразия, вариационный бикомплекс обеспечивает строгую математическую формулировку лагранжевой теории четных и нечетных классических полей и лагранжевой БРСТ теории.

См. также[править | править код]

Литература[править | править код]

  • C. Bartocci, U. Bruzzo, D. Hernandez Ruiperez, The Geometry of Supermanifolds (Kluwer, 1991) ISBN 0-7923-1440-9
  • T. Stavracou, Theory of connections on graded principal bundles, Rev. Math. Phys. 10 (1998) 47
  • B. Kostant, Graded manifolds, graded Lie theory, and prequantization, in Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics 570 (Springer, 1977) p. 177
  • A. Almorox, Supergauge theories in graded manifolds, in Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics 1251 (Springer, 1987) p. 114
  • D. Hernandez Ruiperez, J. Munoz Masque, Global variational calculus on graded manifolds, J. Math. Pures Appl. 63 (1984) 283
  • G. Giachetta, L. Mangiarotti, G. Sardanashvily, Advanced Classical Field Theory (World Scientific, 2009) ISBN 978-981-283-895-7
  • Сарданашвили Г. А., Современные методы теории поля. 4. Геометрия и квантовые поля (УРСС, 2000) ISBN 5-88417-221-4.

Ссылки[править | править код]

Теоретическая физика