Лазерная наплавка

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Ла́зерная напла́вка — метод нанесения материала при помощи лазерного луча, использующегося для создания ванны расплава, куда подается материал. В качестве присадки могут использоваться как порошки, так и проволоки[1].

Технология[править | править код]

Современное оборудование для лазерной наплавки, в основном, оснащается диодными или оптоволоконными лазерными источниками. Помимо этого существуют газовые и другие источники, также используемые для наплавки.

Лазерная наплавка по характеру излучения бывает:

  1. Лазером в непрерывным излучением.
  2. Импульсным лазером.

По способу подачи наплавляемого материала существуют проволочная и порошковая лазерная наплавка.

Существуют следующие способы подачи материала:

  • Коаксиальная.
  • Латеральная.

Для лазерной наплавки применимы типы лазеров, генерирующих на длине волны излучения в диапазоне 0,9—10,2 мкм, так как в этом диапазоне у большинства чистых металлов и сплавов степень поглощения излучения достаточна, а стоимость лазерного излучателя приемлема для процесса.

Используются следующие типы лазеров:

  1. Оптоволоконные лазеры.
  2. Лазеры на алюмо-иттриевом гранате (YAG:Nd) с ламповой или диодной накачкой.
  3. СО2 лазеры (вышли из применения в следствии дорого обслуживания и соотношения цены за килловат мощности/пиковой мощности, сложной системы передачи излучения к месту работы)
Лазерная наплавка на запорную арматуру

Наплавка лазером с непрерывным излучением Такая наплавка характеризуется большей производительностью. Среднее значение зоны перемешивания материала наплавки с основой составляет 10—100 мкм, в зависимости от режимов наплавки. Толщина наплавляемого слоя за один проход варьируется от 0,05—3 мм.

Существуют оптические системы, позволяющие наплавлять как на внешние, так и на внутренние поверхности. Для наплавки на внутренние поверхности дополнительно используются призмы или зеркала поворачивающие поток света.

Основными потребителями технологий лазерной наплавки являются: нефтегазовая отрасль, общее машиностроение, производители специфических изделий для разных видов промышленных процессов, в которых треюуется модификация или восстановление поверхности.

Наплавка импульсным лазером

Импульсный лазер отличается большой пиковой мощностью, работа по наплавке идёт вручную, в основном проволокой, или с помощью роботизированных систем (проволочная или порошковая). Наплавляемый материал подается в ванну расплава.

Пример роботизированной импульсной лазерной наплавки
Пример роботизированной импульсной лазерной наплавки

При ручной наплавке наблюдают процесс наплавки под микроскопом с увеличением 10—16 крат. В окуляре микроскопа находится перекрестие, по которому выставляется лазерный луч, поэтому оператор знает куда попадёт следующий импульс. Используемые диаметры сфокусированного луча лазера варьируется в пределах от 0,2—2,5 мм, в зависимости от диаметра подаваемой присадки (d пятна должен быть в 1,5—2 раза больше диаметра присадки, для перемешивания присадки с наплавляемой поверхностью), что позволяет минимизировать объёмы расплава и соответственно уменьшить тепловложения в обрабатываемый материал. В зону наплавки обычно подаётся инертный газ, предохраняющий ванну расплава от доступа кислорода воздуха. Ручная наплавка, в основном, применяется для получения первоначальных размеров изношенных или поврежденных деталей. Чаще всего используется для восстановления повреждённых деталей машин и пресс-форм. Поскольку процесс по сути является сваркой с присадкой наплавка идёт во время сварки некоторых деталей.

Роботизированная импульсная наплавка чаще применяется для новых изделий, так как позволяет снизить затраты на работу оператора и повысить скорость и точность процесса.

Преимущества лазерной наплавки[править | править код]

  • Дозируемая энергия;
  • Возможность локальной обработки поверхности;
  • Отсутствие термических поводок, минимизация зоны термического влияния;
  • возможность обработки деталей больших габаритов с большим расходом наплавляемого вещества;
  • Быстрый нагрев и остывание наплавляемого материала;
  • Возможность модификации поверхности;
  • Высокая степень адгезии наплавляемого материала при небольшом перемешивании с основой[2].

Применение[править | править код]

Лазерная наплавка получила широкое распространение в промышленности. Наиболее известные применения — это восстановление повреждённых поверхностей различных деталей машин, пресс-форм и фильер. Второе применение — это модификация поверхностности. Присадочные материалы могут отличаться по химическому составу от основы и иметь другие свойства. Таким образом упрочняют износившиеся кромки штампов, наплавляя более твёрдый материал.

Более новое применение это прототипирование деталей. Например, 3D-принтер, печатающий металлическим порошком, по сути сплавляет между собой слои порошка[3].

Примечания[править | править код]

  1. Шишковский И. Лазерный синтез функционально-градиентных мезоструктур и объемных изделий. — 2018. — ISBN 9785040048083.
  2. Академия Наук СССР. Известия Академии наук СССР.: Серия физическая, Том 47. — 1983. — С. 834-1664.
  3. Всесоюзная академия сельскохозяйственных наук имени В.И. Ленина. Механизация и электрификация сельского хозяйства. — Колос, 1990.